Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Infect Dis ; 75(1): e234-e240, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2017762

ABSTRACT

BACKGROUND: Modern transportation plays a key role in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and new variants. However, little is known about the exact transmission risk of the virus on airplanes. METHODS: Using the itinerary and epidemiological data of coronavirus disease 2019 (COVID-19) cases and close contacts on domestic airplanes departing from Wuhan city in China before the lockdown on 23 January 2020, we estimated the upper and lower bounds of overall transmission risk of COVID-19 among travelers. RESULTS: In total, 175 index cases were identified among 5797 passengers on 177 airplanes. The upper and lower attack rates (ARs) of a seat were 0.60% (34/5622, 95% confidence interval [CI] .43-.84%) and 0.33% (18/5400, 95% CI .21-.53%), respectively. In the upper- and lower-bound risk estimates, each index case infected 0.19 (SD 0.45) and 0.10 (SD 0.32) cases, respectively. The seats immediately adjacent to the index cases had an AR of 9.2% (95% CI 5.7-14.4%), with a relative risk 27.8 (95% CI 14.4-53.7) compared to other seats in the upper limit estimation. The middle seat had the highest AR (0.7%, 95% CI .4%-1.2%). The upper-bound AR increased from 0.7% (95% CI 0.5%-1.0%) to 1.2% (95% CI .4-3.3%) when the co-travel time increased from 2.0 hours to 3.3 hours. CONCLUSIONS: The ARs among travelers varied by seat distance from the index case and joint travel time, but the variation was not significant between the types of aircraft. The overall risk of SARS-CoV-2 transmission during domestic travel on planes was relatively low. These findings can improve our understanding of COVID-19 spread during travel and inform response efforts in the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , China/epidemiology , Communicable Disease Control , Humans , Pandemics
2.
Natl Sci Rev ; 8(11): nwab148, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1559483

ABSTRACT

2020 was an unprecedented year, with rapid and drastic changes in human mobility due to the COVID-19 pandemic. To understand the variation in commuting patterns among the Chinese population across stable and unstable periods, we used nationwide mobility data from 318 million mobile phone users in China to examine the extreme fluctuations of population movements in 2020, ranging from the Lunar New Year travel season (chunyun), to the exceptional calm of COVID-19 lockdown, and then to the recovery period. We observed that cross-city movements, which increased substantially in chunyun and then dropped sharply during the lockdown, are primarily dependent on travel distance and the socio-economic development of cities. Following the Lunar New Year holiday, national mobility remained low until mid-February, and COVID-19 interventions delayed more than 72.89 million people returning to large cities. Mobility network analysis revealed clusters of highly connected cities, conforming to the social-economic division of urban agglomerations in China. While the mass migration back to large cities was delayed, smaller cities connected more densely to form new clusters. During the recovery period after travel restrictions were lifted, the netflows of over 55% city pairs reversed in direction compared to before the lockdown. These findings offer the most comprehensive picture of Chinese mobility at fine resolution across various scenarios in China and are of critical importance for decision making regarding future public-health-emergency response, transportation planning and regional economic development, among others.

3.
Engineering (Beijing) ; 7(7): 914-923, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1220835

ABSTRACT

Travel restrictions and physical distancing have been implemented across the world to mitigate the coronavirus disease 2019 (COVID-19) pandemic, but studies are needed to understand their effectiveness across regions and time. Based on the population mobility metrics derived from mobile phone geolocation data across 135 countries or territories during the first wave of the pandemic in 2020, we built a metapopulation epidemiological model to measure the effect of travel and contact restrictions on containing COVID-19 outbreaks across regions. We found that if these interventions had not been deployed, the cumulative number of cases could have shown a 97-fold (interquartile range 79-116) increase, as of May 31, 2020. However, their effectiveness depended upon the timing, duration, and intensity of the interventions, with variations in case severity seen across populations, regions, and seasons. Additionally, before effective vaccines are widely available and herd immunity is achieved, our results emphasize that a certain degree of physical distancing at the relaxation of the intervention stage will likely be needed to avoid rapid resurgences and subsequent lockdowns.

4.
Nat Hum Behav ; 5(6): 695-705, 2021 06.
Article in English | MEDLINE | ID: covidwho-1091482

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has posed substantial challenges to the formulation of preventive interventions, particularly since the effects of physical distancing measures and upcoming vaccines on reducing susceptible social contacts and eventually halting transmission remain unclear. Here, using anonymized mobile geolocation data in China, we devise a mobility-associated social contact index to quantify the impact of both physical distancing and vaccination measures in a unified way. Building on this index, our epidemiological model reveals that vaccination combined with physical distancing can contain resurgences without relying on stay-at-home restrictions, whereas a gradual vaccination process alone cannot achieve this. Further, for cities with medium population density, vaccination can reduce the duration of physical distancing by 36% to 78%, whereas for cities with high population density, infection numbers can be well-controlled through moderate physical distancing. These findings improve our understanding of the joint effects of vaccination and physical distancing with respect to a city's population density and social contact patterns.


Subject(s)
COVID-19 , Civil Defense/organization & administration , Communicable Disease Control , Disease Transmission, Infectious/prevention & control , Physical Distancing , Vaccination , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , China/epidemiology , Cities/classification , Cities/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Delivery of Health Care, Integrated , Geographic Information Systems/statistics & numerical data , Humans , SARS-CoV-2 , Vaccination/methods , Vaccination/standards
5.
J Travel Med ; 27(8)2020 12 23.
Article in English | MEDLINE | ID: covidwho-889576

ABSTRACT

BACKGROUND: The COVID-19 pandemic has posed an ongoing global crisis, but how the virus spread across the world remains poorly understood. This is of vital importance for informing current and future pandemic response strategies. METHODS: We performed two independent analyses, travel network-based epidemiological modelling and Bayesian phylogeographic inference, to investigate the intercontinental spread of COVID-19. RESULTS: Both approaches revealed two distinct phases of COVID-19 spread by the end of March 2020. In the first phase, COVID-19 largely circulated in China during mid-to-late January 2020 and was interrupted by containment measures in China. In the second and predominant phase extending from late February to mid-March, unrestricted movements between countries outside of China facilitated intercontinental spread, with Europe as a major source. Phylogenetic analyses also revealed that the dominant strains circulating in the USA were introduced from Europe. However, stringent restrictions on international travel across the world since late March have substantially reduced intercontinental transmission. CONCLUSIONS: Our analyses highlight that heterogeneities in international travel have shaped the spatiotemporal characteristics of the pandemic. Unrestricted travel caused a large number of COVID-19 exportations from Europe to other continents between late February and mid-March, which facilitated the COVID-19 pandemic. Targeted restrictions on international travel from countries with widespread community transmission, together with improved capacity in testing, genetic sequencing and contact tracing, can inform timely strategies for mitigating and containing ongoing and future waves of COVID-19 pandemic.


Subject(s)
Air Travel , COVID-19 , Communicable Disease Control , Disease Transmission, Infectious , Global Health/statistics & numerical data , SARS-CoV-2/isolation & purification , Air Travel/statistics & numerical data , Air Travel/trends , Bayes Theorem , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Epidemiologic Measurements , Epidemiological Monitoring , Humans , Phylogeny , Spatio-Temporal Analysis
6.
Nature ; 585(7825): 410-413, 2020 09.
Article in English | MEDLINE | ID: covidwho-164593

ABSTRACT

On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic1. The strategies based on non-pharmaceutical interventions that were used to contain the outbreak in China appear to be effective2, but quantitative research is still needed to assess the efficacy of non-pharmaceutical interventions and their timings3. Here, using epidemiological data on COVID-19 and anonymized data on human movement4,5, we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimate that there were a total of 114,325 cases of COVID-19 (interquartile range 76,776-164,576) in mainland China as of 29 February 2020. Without non-pharmaceutical interventions, we predict that the number of cases would have been 67-fold higher (interquartile range 44-94-fold) by 29 February 2020, and we find that the effectiveness of different interventions varied. We estimate that early detection and isolation of cases prevented more infections than did travel restrictions and contact reductions, but that a combination of non-pharmaceutical interventions achieved the strongest and most rapid effect. According to our model, the lifting of travel restrictions from 17 February 2020 does not lead to an increase in cases across China if social distancing interventions can be maintained, even at a limited level of an on average 25% reduction in contact between individuals that continues until late April. These findings improve our understanding of the effects of non-pharmaceutical interventions on COVID-19, and will inform response efforts across the world.


Subject(s)
Contact Tracing/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Hand Disinfection/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , Social Isolation , Travel/legislation & jurisprudence , COVID-19 , China/epidemiology , Coronavirus Infections/transmission , Humans , Pneumonia, Viral/transmission , Risk Assessment , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL